19 research outputs found

    Monte Carlo simulation of the treatment of uveal melanoma using measured heterogeneous 106Ru plaques

    Get PDF
    Background/Aims: Ruthenium plaques are used for the treatment of ocular tumors. The aim of this work is the comparison between simulated absorbed dose distributions tallied in an anthropomorphic phantom, obtained from ideal homogeneous plaques, and real eye plaques in which the actual heterogeneous distribution of 106Ru was measured. The placement of the plaques with respect to the tumor location was taken into consideration to optimize the effectiveness of the treatment. Methods: The generic CCA and CCB, and the specific CCA1364 and CCB1256 106Ru eye plaques were modeled with the Monte Carlo code PENELOPE. To compare the suitability of each treatment for an anterior, equatorial and posterior tumor location, cumulative dose-volume histograms for the tumors and structures at risk were calculated. Results: Eccentric placements of the plaques, taking into account the inhomogeneities of the emitter map, can substantially reduce the dose delivered to structures at risk while maintaining the prescribed dose at the tumor apex. Conclusions: The emitter map distribution of the plaque and the computerized tomography of the patient used in a Monte Carlo simulation allow an accurate determination of the plaque position with respect to the tumor with the potential to reduce the dose to sensitive structures. © 2018 S. Karger AG, BaselPostprint (published version

    Monte Carlo computation of dose-volume histograms in structures at risk of an eye irradiated with heterogeneous ruthenium-106 plaques

    Get PDF
    Background/Aims:The aim of this work is to compare Monte Carlo simulated absorbed dose distributions obtained from 106Ru eye plaques, whose heterogeneous emitter distribution is known, with the common homogeneous approximation. The effect of these heterogeneities on segmented structures at risk is analyzed using an anthropomorphic phantom. Methods:The generic CCA and CCB, with a homogeneous emitter map, and the specific CCA1364 and CCB1256 106Ru eye plaques are modeled with the Monte Carlo code PENELOPE. To compare the effect of the heterogeneities in the segmented volumes, cumulative dose-volume histograms are calculated for different rotations of the aforementioned plaques. Results:For the cornea, the CCA with the equatorial placement yields the lowest absorbed dose rate while for the CCA1364 in the same placement the absorbed dose rate is 33% higher. The CCB1256 with the hot spot oriented towards the cornea yields the maximum dose rate per unit of activity while it is 44% lower for the CCB. Conclusions:Dose calculations based on a homogeneous distribution of the emitter substance yield the lowest absorbed dose in the analyzed structures for all plaque placements. Treatment planning based on such calculations may result in an overdose of the structures at risk.Peer ReviewedPostprint (updated version

    Local radiation of uveal melanoma with increased high scleral contact dose

    No full text

    Monte Carlo simulation of the treatment of uveal melanoma using measured heterogeneous 106Ru plaques

    No full text
    Background/Aims: Ruthenium plaques are used for the treatment of ocular tumors. The aim of this work is the comparison between simulated absorbed dose distributions tallied in an anthropomorphic phantom, obtained from ideal homogeneous plaques, and real eye plaques in which the actual heterogeneous distribution of 106Ru was measured. The placement of the plaques with respect to the tumor location was taken into consideration to optimize the effectiveness of the treatment. Methods: The generic CCA and CCB, and the specific CCA1364 and CCB1256 106Ru eye plaques were modeled with the Monte Carlo code PENELOPE. To compare the suitability of each treatment for an anterior, equatorial and posterior tumor location, cumulative dose-volume histograms for the tumors and structures at risk were calculated. Results: Eccentric placements of the plaques, taking into account the inhomogeneities of the emitter map, can substantially reduce the dose delivered to structures at risk while maintaining the prescribed dose at the tumor apex. Conclusions: The emitter map distribution of the plaque and the computerized tomography of the patient used in a Monte Carlo simulation allow an accurate determination of the plaque position with respect to the tumor with the potential to reduce the dose to sensitive structures. © 2018 S. Karger AG, Base

    Therapieempfehlungen bei der Behandlung von juxtapapillären Melanomen

    No full text

    Adjuvant Ruthenium-106 brachytherapy in the treatment of conjunctival melanoma

    No full text

    Treatment of juuxtapapillary uveal melanomas

    No full text

    Direct reading measurement of absorbed dose with plastic scintillators-The general concept and applications to ophthalmic plaque dosimetry

    No full text
    We have developed dosemeters based on plastic scintillators for a variety of applications in radiation therapy. The dosemeters consist basically of a tissue-substituting scintillator probe, an optical fiber light guide, and a photomultiplier tube. The background light generated in the light guide can be compensated by a simultaneous measurement of the light from a blind fiber. Plastic scintillator dosemeters combine several advantageous properties which render them superior to other dosemeter types for many applications: minimal disturbance of the radiation field because of the homogeneous detector volume and the approximate water equivalence; no dependence on temperature and pressure (under standard clinical conditions) and angle of radiation incidence; no high voltage in the probe; high spatial resolution due to small detector volumes; direct reading of absorbed doses; and a large dynamical range. The high spatial resolution together with direct reading make these detectors suitable for real-time 3-D dosimetry using multi-channel detector systems. Such a system has been developed for eye plaque dosimetry and successfully employed for dosimetric treatment optimization. The plaque optimization can be performed by dosimetric measurements for the individual patient (“dosimetric treatment planning”). The time consumption for this procedure is less than for a physically correct computer-based therapy planning, e.g., by means of a Monte Carlo simulation

    Brachytherapie großer Melanome der Uvea

    No full text

    Brachytherapie von uvealen Melanomen mit einer Tumorhöhe größer als 6,5 mm

    No full text
    corecore